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Summary. Hierarchical models (HMs) have been used extensively in multisite time series stud-
ies of air pollution and health to estimate health effects of a single pollutant adjusted for other
pollutants and other time varying factors. Recently, the US Environmental Protection Agency
has called for research quantifying health effects of simultaneous exposure to many air pollu-
tants. However, straightforward application of HMs in this context is challenged by the need to
specify a random-effect distribution on a high dimensional vector of nuisance parameters. Here
we introduce the reduced HM as a general statistical approach for analysing correlated data with
many nuisance parameters. For reduced HMs we first calculate the integrated likelihood of the
parameter of interest (e.g. the excess number of deaths attributed to simultaneous exposure to
high levels of many pollutants), and we then specify a flexible random-effect distribution directly
on this parameter. Simulation studies show that the reduced HM performs comparably with the
full HM in many scenarios and even performs better in some cases, particularly when the multi-
variate random-effect distribution of the full HM is misspecified. Methods are applied to estimate
relative risks of cardio-vascular hospital admissions associated with simultaneous exposure to
elevated levels of particulate matter and ozone in 51 US counties during 1999–2005.

Keywords: Air pollution; Multilevel models; Multisite time series data; Nuisance parameters;
Random effects

1. Introduction

The US Environmental Protection Agency estimated that thousands of premature deaths and
hundreds of thousands of cases of illness may be avoided by reducing pollution (Environmental
Protection Agency, 2011). Most epidemiological studies of air pollution and health have
estimated the health effects that are associated with ambient exposure to individual pollutants
adjusted for exposure to other pollutants and confounders. However, the National Research
Council has recently questioned whether the current approach of setting separate national ambi-
ent air quality standards (NAAQSs) for each of the six criteria pollutants adequately protects
population health, as this approach may greatly underestimate risk (National Research Coun-
cil, 2004). To meet the challenges of the National Research Council recommendations, new
statistical methods are needed to account for multiple exposures and their interactions.
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Previous multisite time series studies of the health effects of air pollution have estimated
risks that are associated with exposure to a single pollutant. Dominici et al. (2000) developed
a two-stage hierarchical model to combine information across locations on the association
between daily changes of a given pollutant and daily changes in the health outcome, adjusted
for other pollutants and confounders. This approach has been applied to several national US
studies for estimating independent associations of various pollutants of epidemiologic interest
with different health outcomes, including mortality and cardio-vascular and respiratory emer-
gency hospital admissions (Dominici et al., 2006; Bell et al., 2004; Peng et al., 2008, 2009).
Two-level random-effect models have also been used to estimate health effects of exposure
to individual pollutants and to identify factors that explain heterogeneity in the health risks
across European cities (Katsouyanni et al., 2001). Addressing the potential for biased estim-
ates due to measurement error of correlated exposures in multipollutant models, Zeka and
Schwartz (2004) applied methodology that was developed by Schwartz and Coull (2003) to
estimate independent effects of individual pollutants that minimizes the effect of measurement
error.

To estimate the health effects of simultaneous exposure to multiple pollutants, we specify a
hierarchical model (HM) that, at the first stage, flexibly specifies the air pollution–health out-
come risk surface by incorporating interactions between pollutants and allowing for smooth
non-linear functions of pollutant concentrations. In the full HM, we define βi to be the random
effects describing the association between the health outcome and the multiple exposure vari-
ables that are included in the regression model (e.g. non-linear functions of main effects and
interactions of pollution variables and potential confounders) for the ith location. The parame-
ter of primary scientific interest (θi) is the increased health risk when daily ambient levels of the
pollutants considered are simultaneously above their national standards compared with when
daily levels are below their national standards. Our goals are to obtain more precise estimates of
θi by borrowing strength across locations, to estimate overall regional or national risks θÅ and
to identify site-specific factors (e.g. population demographics, traffic patterns and long-term
averages of other pollutants) that modify the association between simultaneous exposure to
multiple pollutants and adverse health outcomes.

More generally, the hierarchical modelling approaches that we consider apply to prob-
lems where the parameter of interest θi can be defined as a known function of βi where
dim.βi/ � dim.θi/. Many difficulties may arise on implementation of standard generalized
linear mixed models or full HMs in the presence of a high dimensional vector of random
effects (βi). First, one must specify a multivariate random-effect distribution on the full
vector βi, which might not be of primary scientific interest. There is an extensive literature
on the consequences of misspecification of random-effect distributions in generalized linear
mixed models (Verbeke and Lesaffre, 1997; Heagerty and Kurland, 2001; Litière et al., 2008;
Agresti et al., 2004). Though small to moderate misspecification of the random-effect dis-
tribution may not have a large effect in the estimation of fixed effects, there are situations
for which misspecification can result in a loss of efficiency and biased estimates of the ran-
dom effects (Neuhaus et al., 1992; Heagerty and Kurland, 2001; Agresti et al., 2004; Litière
et al., 2010; McCulloch and Neuhaus, 2011). Several approaches have been proposed for speci-
fying flexible semiparametric or non-parametric distributions for the random effects (Laird,
1978; Magder and Zeger, 1996; Komárek and Lesaffre, 2008; Gallant and Nychka, 1987;
Chen et al., 2002). However, most of these approaches cannot be implemented in the con-
text of a high dimensional vector of random effects, and the validity of the assumption on the
random-effect distribution is sometimes difficult to verify (Agresti et al., 2004; Litière et al.,
2008). Second, if one is interested in estimating effect modification, at the second stage the
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full HM presents the additional challenge of specifying a high dimensional multivariate regres-
sion model. Third, implementing diagnostic methods for misspecification of a multivariate
random-effect distribution can be very challenging. Fourth, it may be computationally inten-
sive and/or challenging to implement a Markov chain Monte Carlo (MCMC) sampler that
mixes well and converges quickly to the stationary distribution as the number of random effects
increases.

In this paper, we introduce reduced HMs as a general statistical approach for eliminating
nuisance parameters in HMs with a large number of random effects. The reduced HM com-
bines information across clusters (e.g. locations) directly on the parameter of interest θi. At
the first stage, we calculate an integrated likelihood for θi and, at the second stage, we spec-
ify a flexible random-effect distribution directly on the θi. Reduced HMs overcome many
of the practical challenges in the specification and implementation of full HMs in the
context of a high dimensional vector of nuisance parameters. Though developed to study health
effects of simultaneous exposure to multiple pollutants, reduced HMs are widely applicable
for other studies of multiple exposures, and in general to clustered data sets with a large
number of nuisance parameters. Accordingly, much of the methods section is presented in
a general context while maintaining a close connection to the scientific motivation for this
work.

Previous studies have used likelihoods of the parameter of interest at the first stage of a hier-
archical model for conducting a meta-analysis of randomized trials of a treatment for stomach
ulcers (Efron, 1996; Liao, 1999). Specifically, Efron (1996) used a conditional likelihood for the
clinical-trial-specific log-odds ratio (θi) and developed empirical Bayes methods for combining
the likelihoods to conduct inference (interval estimation) on the θi. Liao (1999) also eliminated
nuisance parameters at the first stage by using conditional likelihoods, but he modelled the θi by
using a Bayesian approach, assuming a normal random-effect distribution for the θi. In these
two studies, the vector of cluster-specific parameters βi is just two dimensional, and a condi-
tional likelihood for θi is available in closed form. Although not explicitly defining a likelihood
function to eliminate nuisance parameters at the first stage of the HM, Warn et al. (2002), build-
ing on the work by Smith et al. (1995), reparameterized the cluster-specific parameters βi as
.λi, θi/, where θi is the parameter of interest, and then proposed to use non-informative priors
for the nuisance parameter λi, which were assumed to be independent across clusters. However,
it may not always be possible to define such a reparameterization (e.g. if θi is a complex function
of βi), and this approach still requires sampling the nuisance parameter λi at each iteration of
the MCMC algorithm, which can become computationally expensive when the dimension of
λi is large. In this paper we generalize parameter reduction for HMs to very general situations
where

(a) no conditional or marginal likelihood is available,
(b) an integrated likelihood is not available in closed form,
(c) a reparameterization .λi, θi/ of the within-cluster parameter space does not exist,
(d) the second-level model includes cluster-specific covariates and
(e) flexible specifications of the random-effect distribution are desired.

This generalization is referred to as a reduced HM. Additionally, although there are several
practical advantages of the reduced HM arising from the elimination of nuisance param-
eters at the first stage, even in the specific context where this approach has been applied
previously (two-dimensional settings with conditional likelihood available in closed form),
there is a lack of evidence supporting the reduced HM as performing competitively with the
full HM across a range of scenarios. To address this gap, we shall provide a critical evalu-
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ation of the reduced HM as an alternative to fitting the full HM in a series of simulation
studies.

In Section 2, we describe the multisite time series data that are used to estimate the health
risks associated with simultaneous exposure to multiple pollutants. In Section 3, we describe
the level 1 model of an HM aimed at estimating the association between joint exposure to
ozone (O3) and fine particulate matter and hospital admissions. In Section 4, we introduce the
reduced HM in a general setting where an integrated likelihood is estimated for each cluster
and a flexible random-effect distribution is specified directly on the cluster-specific parameter
of interest. Section 5 describes our simulation study. In Section 6, we present our results from
the data analysis. We provide discussion and concluding remarks in Section 7.

2. Data

We used data from a national database consisting of parallel time series from 60 counties
in the north-eastern USA during the period 1999–2005. Daily counts of emergency hospital
admissions for cardio-vascular diseases (CVDs), which comprise heart failure (international
classification of diseases ICD-9 code 428), heart rhythm disturbances (codes 426–427), cerebro-
vascular events (codes 430–438), ischaemic heart disease (codes 410–414 and 429) and peripheral
vascular disease (codes 440–448) were obtained from billing claims of US Medicare enrollees.
CVD admissions were stratified by two age categories: 65–74 and 75 years or older. Concentra-
tions of fine particulate matter, PM2:5 (micrograms per cubic metre), and O3 (parts per billion),
which for many counties are measured on either a 1-in-3 or 1-in-6 day schedule, were obtained
from the US Environmental Protection Agency’s air quality system. Daily temperature and
dewpoint temperature were obtained from the National Climatic Data Center. Among the 60
north-eastern US counties with available data, we considered the 51 counties having at least
100 days where PM2:5- and O3 levels were measured concurrently, as well as at least one day
when both pollutants were above their national standard (which is defined below). Fig. 1 shows
a map of the locations, as well as example time series of PM2:5- and O3 levels for Washington
DC.

3. Poisson regression model for multiple pollutants

In this section we describe the first level of an HM for estimating health effects that are associated
with simultaneous exposure to fine particulate matter (PM2:5) and O3. We assume for county
i on day j for age group k that the number of CVD admissions yijk has a Poisson distribution
with mean model

log.E[yijk]/= log.nijk/+γi0 +ns.PM2:5ij
; 3DF, bi1/ns.O3ij

; 3DF, bi2/

+γi1agek +γ′
i2 dowij +ns.tempij; 6 DF, γi3/+ns.dptpij; 3DF, γi4/

+ns.temp.3/
ij ; 6 DF, γi5/+ns.dptp

.3/

ij ; 3DF, γi6/+ns.j; 7 DF=year, γi7/, .1/

where nijk is the number of individuals of the kth age group at risk, and ns.·/ denotes natural
cubic splines with the specified degrees of freedom (DFs) and bij (j =1, 2) and γij (j =3, . . . , 7)
representing the spline coefficients. The product of the cubic spline bases for PM2:5 and O3,
which includes both main effects and interaction terms, provides a flexible specification of the
unknown joint pollutant–hospital admissions exposure–response surface. Here age denotes an
indicator for being in the 75 years and older age category (versus 65–74 years), dow is a vector
of indicator variables for day of week, tempij and temp.3/

ij are respectively the current day’s
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and the average of the previous 3 days’ average temperature and dptpij and dptp
.3/

ij are respec-
tively the current day’s and the average of the previous 3 days’ average dewpoint temperature.
The smooth function of calendar time ns.j; 7 DF=year, γi7/ accounts for seasonality and longer-
term, time varying trends in hospital admissions.

This within-county model extends those developed to study PM2:5 and O3 individually (Dom-
inici et al., 2006; Bell et al., 2004) by allowing for non-linear associations of each of the pollutants
and their interaction. In particular, the choice of covariates and DFs in the smooth functions
are based on those used by Dominici et al. (2006). Previous studies have assessed the sensitivity
of health effect estimates from single-pollutant models to adjustment for temperature and the
smooth function of calendar time, finding that results were robust across specifications of the
confounder model (Peng et al., 2006; Welty and Zeger, 2005).

To place model (1) within the more general context of HMs for two-level clustered data,
we introduce some notation. Let bi = .bi1, bi2/ be the vector of random effects for the expo-
sure–response surface characterizing the relationship between joint exposure to O3 and fine
particulate matter and the health outcome. Let γi = .γi0, γi1, . . . , γi7/ be the vector of random
effects describing the association between the confounders and the health outcome, and define
βi = .bi, γi/. Note that these random effects are introduced to model variation across counties,
not as a random-effects parameterization of penalized splines (the number of DFs in the spline
terms is fixed). Let xij denote the full vector of covariate data for day j in county (cluster) i, and
let xb

ij denote the 15-dimensional subvector of xij that is the concatenation of the basis terms
for the main effects and interactions of the spline bases for ozone and fine particulate matter,
ns.PM2:5ij

; 3DF, bi1/ns.O3ij
; 3DF, bi2/.

We next define a variable that identifies whether the daily levels of either PM2:5 and/or O3 are
above or below their corresponding 24-h NAAQSs,

NAAQSij =

⎧⎪⎪⎨
⎪⎪⎩

A if PM2:5 > 35μg m−3 and O3 > 0:049 ppm,
B if PM2:5 > 35μg m−3 and O3 �0:049 ppm,
C if PM2:5 �35μg m−3 and O3 > 0:049 ppm,
D if PM2:5 �35μg m−3 and O3 �0:049 ppm:

The values 35 μg m−3 and 0.049 ppm were derived from the NAAQSs, which are defined in
appendix A of the on-line supplementary materials.

We define θi to be the logarithm of the expected number of CVD admissions on days when
both PM2:5 and O3 are above their respective national standards divided by the expected num-
ber of CVD admissions on days when both pollutants are lower than their national standards,
adjusted for the potential confounding variables:

θi :=h.βi; xi/= log

⎧⎪⎪⎨
⎪⎪⎩

.1=NiA/
∑

j:NAAQSij=A

exp.b′
ix

b
ij/

.1=NiD/
∑

j:NAAQSij=D

exp.b′
ix

b
ij/

⎫⎪⎪⎬
⎪⎪⎭

: .2/

Here NiA and NiD are the number of days when both pollutants are respectively above or below
their respective national standards in county i during the study period 1999–2005. Derivation
of the formulation for the parameter of interest is in appendix B of the on-line supplementary
materials. Other definitions of θi that may be of interest, such as the logarithm of the expected
number of CVD admissions on days when only the level of PM2:5 (or when only O3) is above its
national standard divided by the expected number of CVD admissions on days when both pol-
lutants are lower than their national standards could be defined similarly and the same methods
(which are described below) could be straightforwardly applied.
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4. Reduced hierarchical model

Rather than specify a full HM on the large number of random effects βi, we define a reduced
HM directly on the parameter of interest θi:

yi|θi ∼Li.θi/, independent, i=1, . . . , I,

θi|α∼RE.θi|α/, independent, i=1, . . . , I:
.3/

Here Li.θi/ denotes a likelihood function (which is detailed below) and RE.θi|α/ denotes an
arbitrary random-effect distribution. Note that the likelihood function in general depends on
the vector of outcome data from the ith cluster yi and on the set of covariate data xi, though
we suppress this dependence in our notation. To conduct inference in the Bayesian framework,
a prior distribution is placed on α.

The reduced HM may be further generalized by allowing the random-effect distribution
RE.θi|α/ to depend on cluster level covariates zi, to study potential effect modification. In par-
ticular, for the second-stage model we assume that θi =α0i +α′

1zi and place the random-effect
distribution on the α0i. The second-level model may also be extended to allow the θi to be
spatially correlated across clusters.

4.1. Integrated likelihood
In the general setting where the parameter of interest θi is a complicated function of the level
1 parameters βi as in expression (2), we propose to use an integrated likelihood for Li.θi/. For
notational simplicity the cluster-specific subscript i is suppressed in what follows. An integrated
likelihood for the ith cluster may be expressed as

fy|θ.y|θ/∝fθ|Y.θ|y/=πθ.θ/, .4/

where πθ.θ/ is the prior distribution for θ and fθ|Y is the corresponding posterior distribu-
tion of θ based on the data from only that cluster. Note that, in the special case where the
cluster-specific parameters β can be reparameterized as .θ, λ/, this expression can be rewritten
as

fy|θ.y|θ/=
∫

fy|θ,λ.y|θ, λ/πλ|θ.λ|θ/dλ,

where fy|θ,λ is the joint likelihood, and πλ|θ is the prior density of λ given θ (Berger et al.,
1999).

When such a reparameterization of β is not available or when fy|θ.y|θ/ is not available in
closed form, we propose a simulation approach to approximate expression (4) as follows.

Step 1: assign a prior distribution to the vector β of level 1 parameters, such that the
induced prior distribution πθ.θ/ on θ =h.β; x/ is diffusely spread out over the range of
plausible values for θ. Simulate R prior samples from πθ.θ/.
Step 2: fit a within-cluster model to generate R samples β.r/ from the posterior fβ|y.β|y/.
Step 3: obtain the posterior samples θ.r/ =h.β.r/; x/.
Step 4: select a grid of points {θk} covering the range of θ and apply a Gaussian kernel
smoother to estimate both fθ|y.θ|y/ and πθ.θ/ on this grid.

We repeat this process for each cluster i to obtain approximations f̂ yi|θi
.yi|θi/, i=1, . . . , I. Note

that the choice of prior distribution for β in step 1 will depend on the form of the function
h. Also note that although this procedure requires drawing from the posterior fβi|yi

.βi|yi/,
since this is done within each cluster independently, the sampling is greatly simplified com-
pared with fitting the full HM where the βi are correlated across clusters (i.e. sampling from
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fβ1,…,βI |y1,…, yI
.β1, . . . , βI |y1, . . . , yI//. In addition, since this step is performed a single time

before fitting the reduced HM, estimating the parameters of the reduced HM remains fast. Fur-
ther details of our implementation are in appendix C of the on-line supplementary materials.

4.2. Dirichlet process mixture model for RE(θi jα)
To allow for flexible specification of the random-effect distribution we propose to use a Dirich-
let process mixture model for RE.θi|α/. The Dirichlet process mixture model (Ferguson, 1973;
Neal, 2000) can be expressed as the limit as the number of components K →∞ of the mixture
model

θi|ci, φ∼F.θi|φci
/, independent, i=1, . . . , I,

ci|p∼discrete.ci|p1, . . . , pK/, independent, i=1, . . . , I,

φc ∼G0 for any c,

p∼ Dirichlet.δ=K, . . . , δ=K/,

where discrete.ci|p1, . . . , pK/ corresponds to the probability mass function P.ci = k/=pk (k =
1, . . . , K) and δ=K is the concentration parameter written so that it approaches 0 as K →∞.
Here we consider a normal mixture so that F.·|φc/ = N.·|μc, τc/, and we select the conjugate
prior so that G0 =normal gamma.λ, γ, a, b/, i.e. τc ∼gamma.τ |a, b/ and μc|τc ∼N.λ, γτc/.

4.3. Computational details
The reduced HM (3) may be fitted by using MCMC methods (Metropolis et al., 1953; Gilks
et al., 1995) to generate samples from the posterior distribution of the unknown parameters

P.θ1, . . . , θI , α|y1, . . . , yI/∝π.α/
I∏

i=1
{RE.θi|α/Li.θi/},

where π.α/ denotes the prior distribution on the vector of parameters of the random-effect dis-
tribution. At each iteration of the MCMC algorithm, a sample is drawn from the full conditional

fc.θi/∝RE.θi|α/Li.θi/ .5/

for each cluster i. When the integrated likelihood has been estimated by using the approach from
Section 4.1, we replace Li.θi/ in equation (5) by f̂ yi|θi

.yi|θi/. Since fc.θi/ is not a known distri-
bution, we sample from it by applying a Metropolis–Hastings step. In the Metropolis–Hastings
step, we need to evaluate the likelihood f̂ yi|θi

at an arbitrary point θ. We do this by selecting the
grid point θk that is closest to θ and evaluating the likelihood at that grid point.

For generating posterior samples of α when RE.θi|α/ is the Dirichlet process mixture model
that was defined in Section 4.2, we adapt an MCMC sampling algorithm described by Neal
(2000). Details are in appendix C of the on-line supplementary materials.

5. Simulation study

There are instances for which the reduced HM may be preferred to the full HM owing to practical
considerations such as its simplified implementation and the ease with which prior information
may be incorporated directly on the parameter of interest. However, a more thorough under-
standing of situations when the reduced HM works well is needed. In this section we conduct
simulation studies to compare performance of the reduced HM with the full HM across a range
of scenarios.
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We base our studies on data from a meta-analysis of 41 randomized trials of a treatment for
stomach ulcers, provided by Efron (1996). Rather than use the multipollutant case-study as a
basis for simulation studies, a meta-analysis example is used to highlight the broad utility of the
reduced HM methodology across diverse applications. In addition, even in the simpler context
of this application (a two-dimensional vector of random effects βi) for which a full HM may
be straightforwardly implemented, the relative performance of the reduced HM to the full HM
is not well understood and, as we shall see, the full HM may not always be the optimal choice
even in the low dimensional case.

The data from the ith trial are {yi = .yi0, yi1/, xi = .ni0, ni1/}, where yi0 and yi1 are the number
of occurrences of ulcers for the control and treatment groups, and ni0 and ni1 are the number
of subjects in the control and treatment groups respectively. Let pi = .pi0, pi1/ be the vector of
probabilities of the occurrence of ulcers in the control and treatment groups. The distribution
of the data from experiment (cluster) i is assumed to be

Pi.yi|xi; pi/=
(

ni1

yi1

)
p

yi1
i1 .1−pi1/ni1−yi1

(
ni0

yi0

)
p

yi0
i0 .1−pi0/ni0−yi0 ,

and the parameter of interest is the log-odds ratio

θi =h.pi/= log
{

pi1=.1−pi1/

pi0=.1−pi0/

}
: .6/

In this example, a full HM would require the specification of a random-effect distribution for
pi = .pi1, pi0/. Alternatively, a commonly used specification first defines a one-to-one transfor-
mation of the pi into R2 through the logit link and assumes a bivariate normal distribution for
the random effects:

yki|pik ∼Binom.nik, pik/ for k =0, 1, .7/

logit.pik/=βi0 +βi1 I.k =1/,

.βi0, βi1/′ ∼N{.βÅ
0 , βÅ

1 /′, Σ}:

For a reduced HM, we first summarize the information that is contained in experiment i about
the log-odds ratio θi through a likelihood function, and we then specify a random-effect distri-
bution directly on the θi. For this problem, a conditional likelihood for θi is available in closed
form. By conditioning on the margins of the 2 × 2 table for each experiment, the conditional
likelihood may be expressed as

LC
i .θi/=

(
ni0

yi0

)(
ni1

yi1

)
exp.θiyi1/

min.ni1, yi0+yi1/∑
u=0

(
ni0

u

)(
ni1

yi1 +yi0 −u

)
exp.θiu/

: .8/

We may then use LC
i .θi/ for the likelihood function in the reduced HM (3). Computing inte-

grated likelihoods for each of the randomized trials in the ulcer data set (Efron, 1996), we found
them to be generally quite similar to the corresponding conditional likelihoods, and so only the
conditional likelihoods were considered in the simulation study.

We simulated data under four data-generating mechanisms, and we estimated model param-
eters under four HM formulations. We next describe each of the hierarchical modelling
approaches that were used to fit the data, after which we detail the four data-generating models.
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5.1. Hierarchical models
We fitted each simulated data set by using four approaches: a full HM assuming the logistic
model (7) with a normal random-effect distribution on the βi (model FHM); a reduced HM
using the conditional likelihood LC

i .θi/ from equation (8) with a normal random-effect distribu-
tion on the θi (model RHM-L-N); a reduced HM using the conditional likelihood LC

i .θi/ from
equation (8) with a flexible random-effect distribution on the θi (model RHM-L-DP); a reduced
HM using a normal approximation to the likelihood with a normal random-effect distribution
on the θi (model RHM-N-N). For the flexible random-effect distribution, we considered the
Dirichlet process normal mixture model that was described in Section 4.2. For each approach,
we estimated the cluster-specific log-odds ratios θi as well as the overall log-odds ratio θÅ =E.θi/,
where the expectation is taken over all of the clinical trials that were included in the analysis.
Additionally, we obtained 95% posterior intervals for the overall (θÅ) and cluster-specific (θi)
parameters. Details of estimation for each of the four models are in appendix D of the on-line
supplementary materials.

5.2. Data-generating models
We considered four data-generating models. We always assumed yi0 ∼Binom.ni0, pi0/ and yi1 ∼
Binom.ni1, pi1/, and we selected different models for generating pi0 and pi1 (i=1, . . . , I/. Note
that each model for generating pi0 and pi1 induces a distribution on the log-odds ratio θi through
expression (6). Thus, each time that we generated a data set, we obtained I values of the cluster-
specific, true log-odds ratios θi (one for each cluster i). The models were selected to distinguish
between scenarios where the full HM is expected to outperform the reduced HM and vice versa.
Fig. 2 shows, for each of the four data-generating models, the distribution of the .pi0, pi1/, along
with the corresponding distributions of the .β0i, β1i/= .log{pi0=.1−pi0/}, θi/ and the log-odds
ratios θi.

In each case, we set ni0 =ni1 =n, and we considered n=100 for I =100, 50, 25. These param-
eter values were selected to correspond to a large within-cluster sample size for either a large,
moderate or small number of clusters.

5.2.1. Model 1—bivariate normal
We generated data from

.β0i, β1i/
′ ∼N{.βÅ

0 , βÅ
1 /′, Σ},

logit.pki/=β0i +β1i I.k =1/,

where .βÅ
0 , βÅ

1 /= .−0:2, −1:3/, and we considered two different values for Σ,

Σa =
(

0:9 0
0 1:1

)
and Σb =

(
0:9 0:5
0:5 1:1

)

(see scenarios 1(a) and 1(b) in Fig. 2). These parameter values were selected to be the same
order of magnitude as those from the ulcer data set. Since this model fully specifies a normal
random-effect distribution on the βi, particularly in scenario 1(b) where a moderate correlation
between the random effects is assumed, we expected it to favour the full HM (7).

5.2.2. Model 2—uniform–beta
We generated pi0 ∼uniform.0:1, 0:6/ and pi1|pi0 ∼beta.m=pi0 +0:3, φ/, where the beta distri-
bution is parameterized by its mean m and variance φ. We considered two values for φ, namely
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φa = 0:001 and φb = 0:01. Since this model is not based on either the full or reduced HM a
priori we did not expect it to favour either of these two approaches (see scenarios 2(a) and 2(b)
in Fig. 2).

5.2.3. Model 3—normal mixture
We generated .pi0, pi1/ by

.β0i, β1i/
′ ∼αN.βÅ −ν, Σ/+ .1−α/N.βÅ +ν, Σ/,

logit.pki/=β0i +β1i I.k =1/,

where we fixed βÅ = .−0:2, 1:3/, α= 0:5 and Σ= diag.0:1, 0:1/. We considered two values for
ν, namely ν′

a = .0, 1/ and ν′
b = .0:5, 1/. This data-generating model was selected because the

random-effect distribution will be misspecified for both the full and the reduced HM (since θi =
βi1), when a normal random-effect distribution is assumed; thus, we expected neither approach
to perform particularly well (see scenarios 3(a) and 3(b) in Fig. 2).

5.2.4. Model 4—normal–θi

Finally, we generated data by first simulating values for the log-odds ratios θi and for the log-
odds λi = log{p0i=.1−p0i/}, which induces a distribution on the

.p0i, p1i/=
(

exp.λi/

1+ exp.λi/
,

exp.λi +θi/

1+ exp.λi +θi/

)
:

In particular, we simulated θi ∼ N.μ, σ2/ and λi ∼ 0:5U.−u2, − u1/ + 0:5U.u1, u2/, where we
fixed μ=0:8 and σ2 =10. We considered two scenarios for u1 and u2, namely .u1a, u2a/= .2, 2:1/

and .u1b, u2b/= .0:2, 1:1/. This model was chosen because it was expected to favour the reduced
HM over the full HM, since the normal random-effect distribution on the .βi0, βi1/′ for the full
HM will be misspecified, whereas the random-effect distribution for θi in the reduced HM will
be correctly specified (see scenarios 4(a) and 4(b) in Fig. 2).

5.3. Results
We evaluated the relative performance of the four modelling approaches (FHM, RHM-L-N,
RHM-L-DP and RHM-N-N) in estimating both the cluster-specific (θi) and overall (θÅ) log-
odds ratios. Because disparity in performance across methods was attenuated for the smaller
values for the numbers of clusters, in this section we focus our discussion on results for I =100
(Table 1). Results for the cases I =25 and I =50 are in Tables S1 and S2 of the on-line supple-
mentary materials.

The main disparity in performance across the reduced HM (models RHM-L-N and RHM-
L-DP) and full HM approaches occurred for estimation of the cluster-specific parameters θi;
methods (except RHM-N-N) performed comparably for estimating the overall θÅ. The two
situations where model FHM yielded similar or slightly better cluster-specific estimates than
the reduced HM were those for which the data-generating model implied considerable correla-
tion between β0i and β1i, which could be captured to varying degrees by the bivariate normal
random-effect distribution on the βi. This occurred for data-generating models 1(b) and 3(b),
which had correlations of about 0.5 and 0.8 respectively (see Fig. 2). Because nuisance parame-
ters are eliminated before pooling, the reduced HMs do not take advantage of this correlation
structure. For the other scenarios, the reduced HM generally performed comparably with or
better than FHM. Comparing the reduced HM with different random-effect distributions, we
found that RHM-L-DP performed just as well as or only slightly worse than RHM-L-N when
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Table 1. Simulation results for the cluster-specific log-odds ratios θi : squared error loss ΣI
iD1 .θ̃i � θi /

2 for
the posterior mean estimates θ̃i and coverage of 95% posterior intervals†

Model Simulation Cluster θi Overall θÅ

Squared error Coverage Bias Standard Root- Coverage
loss deviation mean-

squared
error

Model 1, bivariate 1(a)‡ θÅ =−1.3
normal FHM 14:4 0:95 0:00 0:11 0:11 0:94

RHM-L-N 14:8 0:95 0:02 0:11 0:11 0:95
RHM-L-DP 14:8 0:95 0:03 0:11 0:11 0:94
RHM-N-N 18:0 0:94 0:09 0:10 0:14 0:89
1(b)‡ θÅ =−1.3
FHM 14:9 0:95 −0:01 0:12 0:12 0:94
RHM-L-N 18:9 0:94 0:04 0:11 0:12 0:93
RHM-L-DP 18:9 0:94 0:06 0:11 0:12 0:92
RHM-N-N 27:5 0:92 0:14 0:10 0:17 0:74

Model 2, uniform– 2(a) θÅ =1.46
beta FHM 7:5 0:88 −0:03 0:04 0:05 0:87

RHM-L-N 8:0 0:91 −0:03 0:04 0:05 0:90
RHM-L-DP 7:5 0:95 −0:04 0:04 0:06 0:90
RHM-N-N 9:6 0:89 −0:07 0:04 0:08 0:66
2(b) θÅ =1.67
FHM 99:5 0:90 −0:14 0:08 0:16 0:55
RHM-L-N 104:2 0:91 −0:13 0:08 0:16 0:56
RHM-L-DP 96:2 0:92 −0:14 0:09 0:17 0:57
RHM-N-N 137:6 0:89 −0:23 0:07 0:24 0:11

Model 3, normal 3(a) θÅ =−1.3
mixture FHM 10:6 0:95 −0:01 0:11 0:11 0:97

RHM-L-N 11:6 0:95 0:00 0:11 0:11 0:97
RHM-L-DP 9:8 0:96 0:02 0:10 0:11 1:00
RHM-N-N 11:6 0:95 0:06 0:10 0:12 0:94
3(b) θÅ =−1.3
FHM 10:1 0:95 −0:02 0:12 0:13 0:93
RHM-L-N 13:5 0:95 0:02 0:12 0:12 0:94
RHM-L-DP 12:1 0:96 0:03 0:12 0:12 0:99
RHM-N-N 15:0 0:94 0:12 0:11 0:17 0:80

Model 4, normal–θi 4(a) θÅ =0.8
FHM 7:9 0:84 0:00 0:06 0:06 0:85
RHM-L-N 7:2 0:93 0:01 0:06 0:06 0:94
RHM-L-DP 7:3 0:97 −0:01 0:06 0:06 0:96
RHM-N-N 7:5 0:90 −0:05 0:05 0:07 0:86
4(b) θÅ =0.8
FHM 5:1 0:93 0:00 0:05 0:05 0:93
RHM-L-N 5:2 0:94 0:00 0:05 0:05 0:94
RHM-L-DP 5:2 0:96 −0:01 0:04 0:05 0:94
RHM-N-N 5:2 0:94 −0:02 0:04 0:05 0:93

†Results for the mean log-odds ratio θÅ: bias, standard deviation and root-mean-squared error of the poster-
ior mean estimates θ̃

Å
and coverage of 95% posterior intervals. Methods compared are the full HM (FHM),

the reduced HM with conditional likelihood and normal random-effect distribution (RHM-L-N), the reduced
HM with normal approximation to the likelihood and normal random-effect distribution (RHM-N-N) and the
reduced HM with conditional likelihood and Dirichlet process normal mixture for the random-effect distribution
(RHM-L-DP).
‡For scenarios 1(a) and 1(b), the summary statistics for model RHM-L-DP are based on 999 and 998 simulation
repetitions respectively. The other repetitions were excluded because the MCMC algorithm did not converge
within the maximum number of iterations.
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the true distribution was normal (models 1(a) and 1(b) and 4(a) and 4(b)) but performed mod-
erately better when the true random-effect distribution was non-normal (models 2(a) and 2(b)
and 3(a) and 3(b)).

Across simulation scenarios we generally found that the model using the normal approxima-
tion to the likelihood (model RHM-N-N), although most efficient computationally, was not
competitive with the other approaches. For estimating θi, model RHM-N-N either performed
comparably (scenarios 2(a), 3(a) and 4(a) and 4(b)), or moderately worse (scenarios 1(a) and
1(b), 2(b) and 3(b)) than the other approaches. For estimating the overall θÅ, RHM-N-N gener-
ally had larger root-mean-squared error rMSE and coverage markedly lower than the nominal
rate (exceptions are scenarios 3(a) and 4(c)). One reason for the poor performance of RHM-N-
N is that the normal approximation to the likelihood does not provide a good approximation
in this application, particularly when yi1 or yi0 is equal to 0 or n (which occurs most frequently
under models 1(a) and 1(b) and 3(a), scenarios where RHM-N-N performs worst). In addi-
tion, we note that, under scenario 2(b), none of the approaches performed particularly well for
estimating the mean (θÅ) of the highly skewed random-effect distribution for θi.

5.4. Conclusions
Our simulation studies were designed to assess the relative performance of the reduced HM
to the full HM across different scenarios of misspecification of the random-effect distribution.
We found that large correlation in the random-effects βi generally led to slightly improved esti-
mation of the cluster-specific θi by the full HM compared with the reduced HM. However, in
other scenarios, namely those for which the random-effect distribution for the full HM was
misspecified, the reduced HM achieved superior performance. In addition, for estimating the
overall θÅ we found performance to be very similar across methods. Overall, in our simulation
studies the reduced HM performed nearly as well as the full HM, and even performed better in
some cases.

6. Application

We applied the reduced HM to our multisite time series study of 51 urban counties in north-
eastern USA for the period 1999–2005. Our goal was to estimate the county-specific and overall
log-relative-risks of emergency cardio-vascular hospital admissions associated with levels of
PM2:5 and O3 above their national standards.

We considered three types of reduced HM. The first uses a normal approximation to the
likelihood at the first stage and a normal random-effect distribution at the second stage (model
RHM-N-N). The second uses an integrated likelihood at the first stage and a normal random-
effect distribution at the second stage (model RHM-L-N). The third uses an integrated likeli-
hood at the first stage and a Dirichlet process normal mixture for the random-effect distribution
(model RHM-L-DP). The parameter of interest θi, defined in expression (2), is the log-relative-
risk of cardio-vascular admissions when PM2:5 and O3 are both above their national standards
compared with when both are below their standards. For each reduced HM we assumed little
prior information, by incorporating diffuse priors on the overall θÅ. We first fitted each reduced
HM without including any second-level covariates. We subsequently considered inclusion, at
the second stage, of a county-specific measure of the average level of nitrogen dioxide .NO2/

during the study period to demonstrate how reduced HMs may be used to identify effect modi-
fication. Long-term average NO2 levels may be an important effect modifier because they are a
proxy for traffic exposure. This was done by assuming, at the second level, that θi =α0i +α1zi,
where zi is the long-term average NO2 level for the ith county, and placing each of the normal
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(α0i ∼N.αÅ
0 , τ2/) and flexible (Section 4.2) random-effect distributions on the α0i. Details of the

implementations for each reduced HM are in appendix C of the on-line supplementary materials.
Before fitting the reduced HM by using the integrated likelihood (models RHM-L-N and

RHM-L-DP), we evaluated the performance of the integrated likelihood in the air pollution
context through simulation study (detailed in appendix E of the on-line supplementary mate-
rials). Briefly, we considered a model based on our air pollution and health outcome data for
which the integrated likelihood may be written in closed form. We simulated data under this
model, applied our approach to estimate the integrated likelihood (described in Section 4.1) and
compared our estimated integrated likelihood with the true integrated likelihood, finding that
the estimate closely matched the truth.

Fig. 3 shows the posterior mean estimates and 95% posterior intervals for the overall θÅ and
for the cluster-specific θi obtained under each reduced HM. We found that on average, across
all counties, there was an increase in CVD admissions on days when both O3 and fine particu-
late matter were above their national standards compared with days when both pollutants were
below their national standards. In particular, we estimated that the overall log-relative-risk of
CVD admissions associated with levels of O3 and PM2:5 both above their national standards
(θÅ) was 0.024 (95% posterior interval −0.004–0.053) for model RHM-N-N, 0.027 (interval
−0.007–0.061) for model RHM-L-N and 0.029 (interval −0.014–0.071) for model RHM-L-DP.
A log-relative-risk of 0.024 corresponds (approximately) to an increase of 2.4% in cardio-vascu-
lar hospital admissions on days when both O3 and PM2:5 are above their standards compared
with days when both pollutants are below their standards. We also found variability across
counties in the estimate of the cluster-specific effects θi. For most counties, θi was estimated
to be positive, though for each county the posterior interval covered zero. The random-effect
estimates exhibited the largest shrinkage for model RHM-N-N, followed by RHM-L-N, with
the RHM-L-DP estimates remaining furthest from the overall regional estimate.

Fig. 4 shows the posterior mean estimates of the location-specific θi from the reduced HM
including average NO2 level as a covariate at the second stage, plotted against the location’s
long-term average NO2 level. The positive slopes (α1) suggest that the risk of cardio-vascular
admissions that are associated with daily levels of O3 and PM2:5 that are greater than their
national standards is higher in locations with greater NO2 levels and lower in locations with
lower NO2 levels, though the estimates were not statistically significant. More precisely, we
estimated that an interquartile range increase in long-term average NO2 level is associated with
a percentage increase in the relative risk of cardio-vascular hospital admissions associated with
O3 and PM2:5 both above their national standards of 1.2% (95% posterior interval −3.8–6.2%)
under model RHM-L-N, and 1.6% (interval −2.2–5.7%) under RHM-L-DP.

We performed several diagnostic assessments and sensitivity analyses to evaluate our model
fit and to demonstrate the robustness of our results to model specification (see appendix F of
the on-line supplementary materials for details). Though the within-county model (1) does not
account for the potential for auto-correlation in the hospitalization time series, exploratory data
analysis revealed little evidence of residual auto-correlation in our data. In particular, when we
fitted model (1) separately for each county and inspected the auto-correlation function of the
deviance residuals, we did not find a consistent pattern in the auto-correlation function. We fur-
ther investigated whether there was spatial correlation across counties by plotting a variogram
of the estimated county-specific θi, as well as whether there was residual spatial correlation in
the county-specific estimates after accounting for long-term average NO2 levels (appendix F in
the on-line supplementary materials). We did not find evidence of spatial dependence across
counties in the risk of cardio-vascular admissions associated with O3 and PM2:5 both above
their national standards. To assess the sensitivity of our results to the specification of the expo-
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Fig. 4. For the 41 north-eastern US counties with NO2 measurements, estimates of θi from the reduced
HM incorporating long-term average NO2 as a covariate in the second-stage model ( , model RHM-L-N;

, model RHM-L-DP): estimates of slopes α1 (95% posterior intervals) are shown beside the corresponding
trend line; the parameter of interest θi is the log-relative risk of cardio-vascular admissions on days when
both O3 level and PM2:5 exceed their national standard compared with days when both are below their stan-
dards

sure–response surface, we refitted the reduced HM where the joint association of ozone and
PM2:5 with the health outcome in equation (1) was instead modelled as the product of cubic
spline bases with just 2 DFs. We found that the resulting cluster-specific estimates θi were very
similar and that the overall estimates θÅ were nearly identical.

7. Discussion

Although previous studies have estimated health effects of single pollutants, understanding how
complex mixtures of pollutants affect health remains a challenging goal. Quantifying health
risks resulting from exposure to a single pollutant is a useful analytical construct, but it is not
representative of true exposure. It is therefore critical to develop models for estimating health
effects of simultaneous exposure to multiple pollutants.

In this paper we developed methodology for estimating both county-specific and regional
average risks of multipollutant exposure. This approach extends previous single-pollutant mod-
els by allowing for non-linear smooth functions of multiple pollutants and their interactions
at the first stage and for effect modification at the second stage. Because flexible associations
of several exposures are modelled concurrently, the inclusion of interactions of spline terms
leads to a high dimensional vector of random effects. As a result, several challenges to the appli-
cation of the usual full HM framework are introduced. To address these challenges, we have
proposed the reduced HM as a general statistical approach for combining information across
locations directly on the parameter of interest, in the context of many nuisance parameters. In
this approach, information about the parameter of interest is summarized through a likelihood
function (e.g. an integrated likelihood) in the first stage. At the second stage, a flexible random-
effect distribution (e.g. a Dirichlet process normal mixture) is specified directly on the parameter
of interest. We conducted simulation studies to compare performance of the reduced HM with
the full HM, and we applied the reduced HM to a multisite time series study of 51 north-eastern
US counties during the period 1999–2005.
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In comparison with the reduced HM, on first inspection the full HM is the seemingly op-
timal approach, as it uses all of the available data in a single model to combine information
across clusters. However, many practical difficulties may arise on implementation. First, for
the full HM one must specify a random-effect distribution on the vector βi parameterizing
the within-cluster model. This may be difficult when the βi are high dimensional or when they
do not have meaningful interpretations (e.g. regression spline coefficients as in equation (1)).
Additionally, for conducting Bayesian inference, prior distributions must be selected for the
parameters of the random-effect distribution (e.g. the mean vector βÅ and variance–covari-
ance matrix Σ), which may also be complicated if these parameters do not have meaningful
interpretations. If a reparameterization of βi such that βi = .θi, λi/ for λi a .q − 1/-dimen-
sional nuisance parameter does not exist, then prior information about the quantity of interest
θi =h.βi; xi/ cannot be easily translated into prior information about the model parameters βi.
Moreover, if one is interested in effect modification of cluster-specific covariates zi at the sec-
ond level, then a potentially high dimensional multivariate regression model for βi|βÅ, zi must
be specified. Finally, fitting the model (e.g. implementing the MCMC sampler) will become
increasingly challenging and computationally intensive as the dimension of βi (the number of
random effects) increases.

For the reduced HM, however, rather than specify a high dimensional random-effect dis-
tribution on parameters that are not of primary scientific interest, one needs to specify only
a random-effect distribution for a one-dimensional parameter that has a meaningful interpre-
tation. Additionally, it is frequently much easier to incorporate prior information about the
parameter of interest θi than about a large vector of nuisance parameters βi that may be diffi-
cult to interpret (e.g. spline coefficients). Furthermore, reducing an HM on a high dimensional
vector of parameters to an HM on a much lower dimensional space yields simpler implementa-
tion and greater computational efficiency, and makes model diagnostics and sensitivity analyses
more wieldy.

Although the reduced HM overcomes many difficulties in the specification and implemen-
tation of the full HM, it also introduces new challenges. At the first stage, one must eliminate
nuisance parameters to obtain the likelihood function Li.θi/. Although the literature on like-
lihood-based methods for eliminating nuisance parameters is vast (Pawitan, 2001; Edwards,
1992), in this paper we restricted our attention to those likelihoods that correspond to true
probability distributions, including the integrated and conditional likelihood. In the case of
large within-cluster sample sizes, the choice of which likelihood function to use should make
little difference compared with the effect of the selection of the random-effect distribution. For
smaller sample sizes, an integrated likelihood, though more computationally intensive than a
normal approximation, allows greater flexibility for capturing the true form of the likelihood.
Second, although the reduced HM avoids the need to specify a high dimensional random-effect
distribution on the complex βi, use of the integrated likelihood for θi still necessitates specifying
priors for βi (Section 4.1). However, because we seek an objective likelihood function in the
sense that it should summarize the information that is contained in the data about the param-
eter of interest such that the prior has as little influence as possible, any prior distribution for
βi that induces a vague prior for θi will suffice. For the applications that we have considered,
assuming diffuse normal priors for each component of βi leads to a prior for θi that is flat over
a large range of reasonable values for θi, and we have found that this approach works well.
Alternative approaches for approximating the likelihood function could also be considered,
such as the data cloning method of Lele et al. (2007). Third, although one gains simplicity by
eliminating nuisance parameters at the outset, it is possible that some information may be lost
before combining information across clusters.
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We conducted a series of simulation studies to evaluate the relative performance of the reduced
HM compared with the full HM across a range of potential scenarios (Section 5). For the full
HM, because one must specify random-effect distributions for a larger number of parame-
ters, which may also be difficult to interpret, there is more potential for model misspecification
than for the reduced HM where a random-effect distribution is placed on the lower dimen-
sional parameter of interest. However, if the parameter of interest θi is correlated with nuisance
parameters within a cluster, then information may be lost by reducing the parameter space to
a single parameter and pooling the θi. We based the simulation study on an application for
which a conditional likelihood for θi was available in closed form to focus on the effect on infer-
ence of misspecifying the random-effect distribution, rather than of misspecifying the likelihood
function. In addition, though prior studies have considered the special case of reduced HMs
where a conditional likelihood is available (Efron, 1996; Liao, 1999), the relative performance
of this approach compared with the full HM had not been previously studied. When we refitted
the reduced HM by using an integrated likelihood for a subset of the simulations (I =100 and
n= 100), we found that the performance for estimating the cluster-specific and overall param-
eters were either identical or just slightly worse than using the conditional likelihood. Across
simulation scenarios, we found that the reduced HM generally achieved performance that was
comparable with the full HM, and even had superior performance in some cases. We also per-
formed a separate simulation study to evaluate the performance of our approach for estimating
the integrated likelihood (Section 4.1) in a scenario based on our multipollutant application,
finding that the estimated integrated likelihood closely matched the true integrated likelihood
(appendix E of the on-line supplementary materials). Taken together, our findings from these
simulation studies highlight the utility of the reduced HM both specifically to the multipollutant
application and more generally to the context of two-level clustered data.

Development of reduced HMs was motivated by methodological needs for estimating health
risks of joint exposure to multiple pollutants. We applied the reduced HM methodology to
estimate the risk of emergency cardio-vascular admissions associated with simultaneous expo-
sure to fine particulate matter and O3. For the overall effect θÅ, we found marginal evidence of
increased risk on days when both pollutants exceeded their national standards compared with
when both were below their national standards. The reduced HM with normal random-effect
distribution on the parameter of interest θi (model RHM-L-N) led to more shrinkage of the
county-specific random effects than the reduced HM with flexible random-effect distribution
(model RHM-L-DP). Further, RHM-L-N had narrower credible intervals for the county-spe-
cific parameters θi than RHM-L-DP. If the normal random-effect distribution is misspecified
(e.g. if the analysis is missing an important county level effect modifier) then model RHM-L-N
may understate statistical uncertainty in the θi. We illustrated how diagnostics on the reduced
parameter space could be performed to assess modelling assumptions, by investigating spatial
auto-correlation in the risk of simultaneous exposure to PM2:5 and O3. Though we did not find
evidence of spatial auto-correlation in the θi in this application, it would be straightforward
to model spatial dependence in the second stage of the reduced HM by specifying a spatial
model for cov.θi, θj/. We also demonstrated that the reduced HM can easily accommodate
effect modifiers. Specifically, we examined the inclusion of long-term county level NO2, which
is a surrogate for traffic exposure. We found a larger relative risk of cardio-vascular admissions
associated with levels of PM2:5 and O3 that are higher than their national standards in locations
with high average NO2 compared with locations with low average NO2 levels, although the effect
modification was not statistically significant. For our within-county model (1) and parameter
of interest θi (which is defined in expression (2)) we considered only the association of current
day’s exposure to PM2:5 and O3 with hospitalization on the same day, though previous days’
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exposure (e.g. at different lags from the present day) may also be predictive of health outcome.
This choice of lag was motivated by previous single-pollutant studies, which have found that the
strongest effects for PM2:5 and O3 occur at short (current or 1 day before) lags (Dominici et al.,
2006; Bell et al., 2004). Furthermore, to demonstrate our methodology, we considered just a
single example of a policy relevant parameter of interest. The US Environmental Protection
Agency is considering introducing joint national standards to protect human health from the
risks of exposure to complex mixtures better, and so studies providing a scientific basis for joint
standards are needed (Dominici et al., 2010). Depending on the scientific question, alternative
parameters of interest may be specified and the same methodology applied. We could consider,
for example, the gradient of the air pollution–hospitalization exposure–response surface at the
national standards, or the relative risk of adverse health events when both PM2:5 and O3 exceed
their national standard at different temporal lags compared with when just one of the pollu-
tants exceeds its standard. In the future we shall apply this approach to conduct systematically
a national investigation of the health effects that are associated with simultaneous exposure
to multiple pollutants. Methods can be extended to an arbitrarily large number of pollution
variables and locations, and to consider joint pollutant exposure at different lags as well as
multiple parameters of interest that summarize different salient features of the multivariate
exposure–response surface.

There are several extensions to the reduced HM methodology that we have proposed. First,
we assumed a within-location model that had the same form across locations. However, this
assumption could be relaxed. One could specify different within-cluster models for each clus-
ter, as long as the interpretation of the parameter of interest remains constant across models.
For example, for the within-cluster model (1) in the multipollutant application, the full HM
would require a common spline basis (e.g. common knot locations) for the joint O3 and PM2:5
association across locations, whereas the reduced HM can allow for locally optimized spline
bases. Thus the reduced HM approach can readily accommodate heterogeneity in the appro-
priate model to use across locations. In this paper we focused on two-level clustered data sets
and a scalar parameter of interest. However, the reduced HM could be generalized to three- or
higher level models, and to situations where the parameter of interest θi =h.βi/ is a multivariate
parameter with dim.θi/< dim.βi/.

We have described the reduced HM within the context of estimating health risks of exposure
to many pollutants. However, this hierarchical modelling strategy is broadly applicable to clus-
tered data in which the parameter of interest is a known function of the vector of parameters
βi of the within-cluster model. The meta-analysis of stomach ulcer treatment that served as
the basis for our simulation study is one example. Another example is the estimation of heat
wave mortality risk in multisite time series studies (Bobb et al., 2011). One can build a location-
specific model that is similar to model (1) where the exposure–response function of interest is
the temperature–mortality relation, adjusted for time varying covariates. One can then define a
heat wave day indicator variable as a function of temperature on current and previous days. The
parameter of interest θi, which is defined as the log-relative-risk of mortality on heat wave days
compared with non-heat-wave days (see for example Peng et al. (2011)), can then be written as
a known function of the temperature–mortality exposure–response function (parameterized by
βi), and the reduced HM framework may be applied.

The reduced HM is especially useful in situations where βi is high dimensional, where the
components of βi are not easily interpretable or where one wishes to incorporate prior infor-
mation directly on the parameter of interest. For such applications, the reduced HM allows
us to specify a random-effect distribution directly on the parameter of interest θi and to study
effect modification by specifying an across-cluster regression model for θi. Further, the reduced
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parameter space leads to simpler implementation, which facilitates the specification of flexible
random-effect distributions that do not require strong assumptions on the random effects. For
problems that are very high dimensional in the number of clusters, the number of observations
within a cluster, and the number of parameters in the within-cluster model, it may not be com-
putationally feasible to fit a full HM. In such cases, the reduced HM is a practical alternative.

8. Supplementary materials

The reader is referred to the on-line supplementary materials for technical appendices and
additional simulation study results.
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